Si se divide la función polinomial ƒ(x) entre el binomio x - a donde a es un número real, el residuo es igual a ƒ(a).
El teorema del residuo indica que el resultado de evaluar numéricamente una función polinomial para un valor a es igual al residuo de dividir el polinomio entre x - a. Un ejemplo de esto se ilustra en la parte de arriba. Se recomienda que el lector realice otras comprobaciones. Una conclusión muy importante del teorema del residuo es se puede evaluar numéricamente una función polinomial usando la división sintética.
A partir de lo anterior, si ƒ(a) = 0, entonces x - a es un factor del polinomio porque el residuo es cero. Cuando se encuentra un valor de x para el cual ƒ(x) = 0 se ha encontrado una raiz del polinomio, en el supuesto anterior, a es una raiz del polinomio.
El Teorema del Residuo (en álgebra) se emplea para conocer el resíduo que se obtiene al dividir un polinomio por un binomio de la forma x-a (siendo "a" un valor numérico conocido) sin necesidad de efectuar la división.
Para ello basta sustituir el valor de a en el polinomio haciendo x=a
Ejemplo:
x³ + 2x² - 3x + 5 entre x - 2
En este caso, a=2 y por lo tanto sustituimos "a" en el polinomio:
(2)³ + 2(2)² - 3(2) + 5 = 8 + 8 - 6 + 5 = 15
El residuo es entonces 15.
Teorema del factor
Si a es una raiz de ƒ(x), entonces x - a es un factor del polinomio, donde a es un número real.
Aqui podemos observar la importancia de conocer el valor del residuo, ya que si éste es igual a cero, nos va a indicar que hemos encontrado un factor del polinomio y con él, una raiz del polinomio (una solución a la ecuación polinomial ƒ(x) = 0).
Ejercicio
Comprueba que los siguientes polinomios tienen como factores los que se indican:
1.-(x3 − 5x − 1) tiene por factor (x − 3)
(x3 − 5x −1) es divisible por (x − 3) si y sólo si P(x = 3) = 0.
P(3) = 33 − 5 · 3 − 1 = 27 − 15 − 1 ≠ 0
(x − 3) no es un factor.
2.-(x6 − 1) tiene por factor (x + 1)
(x6 − 1) es divisible por (x + 1) si y sólo si P(x = − 1) = 0.
P(−1) = (−1)6 − 1 = 0
(x + 1) es un factor.
3.-(x4 − 2x3 + x2 + x − 1) tiene por factor (x − 1)
(x4 − 2x3 + x2 + x − 1) es divisible por (x − 1 ) si y sólo si P(x = 1) = 0.
P(1) = 14 − 2 · 13 + 1 2 + 1 − 1 = 1 − 2 + 1 + 1 − 1 = 0
(x − 1) es un factor.
4.-(x10 − 1024) tiene por factor (x + 2)
(x10 − 1024) es divisible por (x + 2) si y sólo si P(x = − 2) = 0.
P(−2) = (−2)10 − 1024 = 1024 − 1024 = 0
(x + 2) es un factor.
gracias por la informacion ;)
ResponderEliminarMe sirvió muchas gracias
ResponderEliminarcallese piruja
Eliminarcallese piruja
Eliminarputa madreeeeeeeeeeee
ResponderEliminarno entiendo debo de ir al kinder a que me enseñen a sumar letritas pendejas
ResponderEliminarIdiotaaa
Eliminarvamos los dos aaaaaaaa
Eliminarno entiendo debo de ir al kinder a que me enseñen a sumar letritas pendejas
ResponderEliminarputa madreeeeeeeeeeee
ResponderEliminar😕😕😕
ResponderEliminardifícil
Eliminarbro
Gracias por la información.
ResponderEliminarjajaja callese vieja piruja
ResponderEliminarPendejo esta fácil
ResponderEliminarCallense pnchs vatos todos tarugos
ResponderEliminarMe la pelaron todos
ResponderEliminarMe la pelaron todos
ResponderEliminarArriba el Cruz azul
ResponderEliminarExcelente información, felicitaciones.
ResponderEliminar